
Total Creation of a Software Project

The National Institute of Standards
and Technology (NIST) reported in

2002 that low quality software costs the
U.S. economy $60 billion per year [1].
According to the aptly named “Chaos
Report,” only one quarter of software
projects are judged a success [2]. Software
defects are accepted as inevitable by both
the software industry and the long-suffer-
ing user community. In any other engi-
neering discipline, this defect rate would
be unacceptable. But when safety and
security are at stake, the extent of current
software vulnerability is unsustainable.

Recent research on this issue has been
conducted on behalf of the National
Cyber Security Partnership, formed in
2003 in response to the White House
National Strategy to Secure Cyberspace
[3]. The partnership’s Secure Software
Task Force report states the following:

Software security vulnerabilities are
often caused by defective specifica-
tion, design, and implementation.
Unfortunately today, common
development practices can often
leave numerous defects and result-
ing vulnerabilities in the complex
artifact that is delivered software.
To have a secure U.S. cyber infra-
structure, the supporting software
must contain few, if any, vulnera-
bilities. [4]

The report goes on to recommend
adoption of software development
processes that can measurably reduce soft-
ware specification, design, and implemen-
tation defects. It identifies three software
engineering practices as examples that sat-
isfy this recommendation. This article
describes one of these examples,
Correctness by Construction (CbyC), which

originates from Praxis High Integrity
Systems.

Maturity of Approach
The CbyC approach has two primary
goals: to deliver software with defect rates
an order of magnitude lower than current
best commercial practices in a cost-effec-
tive manner, and to deliver durable soft-
ware that is resilient to change throughout
its life cycle.

Elements of the CbyC approach have
been used for more than 15 years to pro-
duce software with very low defects main-
ly for safety-critical applications, but more
recently for security-critical applications.
The approach has evolved over time and
now applies to the entire systems develop-
ment life cycle, from validation of the
concepts of operation to preserving cor-
rectness properties during long-term
maintenance.

CbyC has delivered software with
defect rates of less than 0.1 defects/1,000
source lines of code (SLOC) with good
productivity: up to around 30 LOC per

day. The achieved defect rates compare
very favorably with defect rates reported
by Capability Maturity Model® Level 5
organizations of 1 defect/1,000 LOC [5].
The comparative rates are shown in Figure
1. It is, of course, true that other
approaches have also succeeded in deliver-
ing similarly low defect rates, however, it is
rare to also deliver good productivity
(since low defect rates are often the result
of extensive, expensive debugging and
testing).

As well as realizing low defect rates,
the CbyC approach has also proved to be
highly cost-effective during both develop-
ment and maintenance. Metrics for five
fully deployed projects are shown in
Figure 2 (see page 7).

Given that CbyC and other best-prac-
tice approaches cited in the National
Cyber Security Summit Task Force report
[4] have been used so successfully for a
number of years, you may ask: Why are
these approaches not in more widespread
use, especially where high levels of assur-
ance are required?

Correctness by Construction:
A Manifesto for High-Integrity Software

Martin Croxford and Dr. Roderick Chapman
Praxis High Integrity Systems

High-integrity software systems are often so large that conventional development processes cannot get anywhere near achieving
tolerable defect rates. This article presents an approach that has delivered software with very low defect rates cost-effectively.
We describe the technical details of the approach and the results achieved, and discuss how to overcome barriers to adopting
such best practice approaches. We conclude by observing that where such approaches are compatible and can be deployed in
combination, we have the opportunity to realize the extremely low defect rates needed for high integrity software composed of
many million lines of code.

Correctness by Construction Defect Rates
Compared to Capability Maturity Model® Data

0
1
2
3
4
5
6
7
8

C
M

M
®

L
e
ve

l1

C
M

M
L
e
ve

l2

C
M

M
L
e
ve

l3

C
M

M
L
e
ve

l4

C
M

M
L
e
ve

l5

C
o
rr

e
ct

n
e
ss

by
C

o
n
st

ru
ct

io
n

CMM® data from [5]

D
e
fe

c
ts

/1
,0

0
0

L
O

C

Figure 1: Correctness By Construction Defect Rates Comparison

Figure 1: Correctness by Construction Defect Rates Comparison

December 2005 www.stsc.hill.af.mil 5

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.

Before considering the barriers to
adoption of best practices, it is necessary
to examine the nature of CbyC. A more
detailed white paper on CbyC [6] is freely
available from the authors.

Fundamental Principles
The primary goals of very low defect rate
and very high resilience to change are real-
ized in CbyC by two fundamental princi-
ples: to make it difficult to introduce
errors in the first place, and to detect and
remove any errors that do occur as early as
possible after introduction.

The key to implementing these princi-
ples is to introduce sufficient precision at
each step of the software development to
enable reasoning about the correctness of
that step – reasoning in the sense that an
argument for correctness can be estab-
lished either by review or using tool sup-
port. The aim is to demonstrate or argue
the software correctness in terms of the
manner in which it has been produced (by
construction) rather than just by observing
operational behavior.

It is the use of precision that differen-
tiates approaches such as CbyC from oth-
ers in common use. Typically, software
development approaches endure a lack of
precision that makes it very easy to intro-
duce errors, and very hard to find those
errors early. Evidence for this may be
found in the common tendency for devel-
opment life cycles to migrate to an often-
repeating code-test-debug phase, which can
lead to severe cost and timescale overruns.

Conversely, the rigor and precision of
the CbyC approach means that the require-
ments are more likely to be correct, the
system is more likely to be the correct sys-
tem to meet the requirements, the imple-
mentation is more likely to be defect-free,
and upgrades are more likely to retain the
original correctness properties.

Achieving the Fundamental
Principles
The principles of making it difficult to
introduce defects and making it easy to
detect and remove errors early are
achieved by a combination of the follow-
ing six strategies:
1. Using a sound, formal notation for

all deliverables. For example, using Z
[7] for writing specifications so it is
impossible to be ambiguous, or using
SPARK [8] to write the code so it is
impossible to introduce errors such as
buffer overflows.

2. Using strong, tool-supported meth-
ods to validate each deliverable. For
example, carrying out proofs of formal

specifications and static analysis of
code. This is only possible where for-
mal notations are used (strategy No. 1).

3. Carrying out small steps and vali-
dating the deliverable from each
step. For example, developing a soft-
ware specification as an elaboration of
the user requirements, and checking
that it is correct before writing code.
For example, building the system in
small increments and checking that
each increment behaves correctly.

4. Saying things only once. For exam-
ple, by producing a software specifica-
tion that says what the software will
do and a design that says how it will
be structured. The design does not
repeat any information in the specifi-
cation, and the two can be produced
in parallel.

5. Designing software that is easy to
validate. For example, writing simple
code that directly reflects the specifica-
tion, and testing it using tests derived
systematically from that specification.

6. Doing the hard things first. For
example, by producing early proto-
types to test out difficult design issues
or key user interfaces.
These six principles are not in them-

selves difficult to apply, and may even
appear obvious. However, in the authors’
experience, many software development
projects fail to deliver against many, if any,
of these principles.

Requirements Engineering
At the requirements step (a source of half
of project failures [2]), a clear distinction
is made between user requirements, sys-
tem specifications, and domain knowl-
edge. CbyC uses satisfaction arguments to
show that each user requirement can be
satisfied by an appropriate combination of
system specification and domain knowl-
edge. The emphasis on domain knowledge
is key – half of all requirements errors are
related to domain [9] – yet the vast major-
ity of requirements processes do not
explicitly address issues in the domain.

Formal Specification and
Design
Using mathematical (or formal) methods
and notations to define the specification
and high-level design provide a precise
description of behavior and a precise
model of its characteristics. This enables
using tools to verify that the design meets
its specification and that the specification
meets its requirements.

Example languages used for formal
specification in CbyC projects include Z

and Communicating Sequential Processes
[10].

Development
The CbyC approach applies rigor to all
software development phases, including
detailed design, implementation, and veri-
fication. As a result, static analysis tools
can be used to produce evidence of cor-
rectness and completeness.

CbyC defines a software design
methodology based on information flow
that can be expressed using an unambigu-
ous notation. This notation is contract-
based, i.e., it is used to define both the
abstract state and the information rela-
tionships across the software modules.

For the coding phase, the CbyC
approach recommends using languages
and tools that are most appropriate for the
task at hand. Validation requirements play
a large role in this choice: The selected
languages must be amenable to verifica-
tion and analysis so that the required evi-
dence of correctness can be generated
effectively. For high-integrity software
modules, the SPARK programming lan-
guage is especially suitable owing to its rig-
orous and unambiguous semantics.

Using mathematically verifiable pro-
gramming languages such as SPARK
opens the way for static analysis tools to
provide proofs for absence of common
runtime errors such as buffer overflows
and using uninitialized variables. Being
able to prove absence of runtime errors,
rather than discovering a subset of them
by testing, is critical to the achievement of
very low defect rates.

Note that other programming lan-
guages have been used for CbyC projects,
and that CbyC projects often have an ele-
ment of mixed-language implementation.
For example, C, C++, Structured Query
Language (SQL), Ada ’83 and Ada ’95
have been used. However, such languages
are intrinsically unsuitable for deep static
analysis and are only ever used for the
non-critical parts of the implementation.

Results
Experience from a wide variety of proj-
ects has confirmed that CbyC is both
effective and economical due to the fol-
lowing:
1. Defects are removed early in the

process when changes are cheap.
Testing becomes a confirmation that
the software works, rather than the
point at which it must be debugged.

2. Evidence needed for safety or security
certification is produced naturally as a
byproduct of the process.

3. Early iterations produce software that

Total Creation of a Software Project

6 CROSSTALK The Journal of Defense Software Engineering December 2005

Correctness By Construction: A Manifesto for High-Integrity Software

carries out useful functions and builds
confidence in the project.
Figure 2 shows results from three safe-

ty-critical and two security-critical projects
that have used elements of the CbyC
approach. For all of these projects, the
reported productivity figures are for the
whole life cycle, from requirements to
delivery.

The Ship/Helicopter Operating Limits
Information System [11] was developed in
1997 and was the first project to be devel-
oped to the full degree of rigor required
by the United Kingdom (UK) Ministry of
Defence (MoD), Defence Standard 00-55
[12] at the highest safety integrity level.

The certification authority system to
support the Multimedia Office Server
(MULTOS) smart card operating system
developed by Mondex International [13]
was developed to the standards of the
Information Technology Security
Evaluation Criteria (ITSEC) Level E61,
roughly equivalent to Common Criteria
Evaluation Assurance Level (EAL) 7. The
system had an operational defect rate of
0.04 defects/KLOC, yet was developed at
a productivity of almost 30 LOC per day
(three times typical industry figures).

CbyC was used in 2003 to develop a
demonstrator biometrics system for the
National Security Agency (NSA), aimed at
showing that it is possible to produce
cost-effective, high-quality, low-defect
software conforming to the Common
Criteria EAL 5 and above [14]. The soft-
ware was subjected to rigorous independ-
ent reliability testing that identified zero
defects and was developed at a productiv-
ity of almost 40 LOC/day.

These and other similar projects have
demonstrated that the rigorous techniques
employed by CbyC such as formal meth-
ods and proofs should no longer be
viewed as belonging solely to academia,
but can be used confidently and effective-
ly in the commercial sector.

Barriers to Adoption
Earlier, the question asked was why best
practices such as CbyC and others refer-
enced by [4] are not in widespread use.
The authors contend that there are two
kinds of barriers to the adoption of best
practices.

First, there is often a cultural mindset
or awareness barrier. Many individuals and
organizations do not recognize or believe
that it is possible to develop software that
is low-defect, high-integrity, and cost-
effective. This may simply be an awareness

issue, in principle readily addressed by arti-
cles such as this. Or there may be a view
that such best practices could never work here
for a combination of reasons. These rea-
sons are likely to include perceived capa-
bility of the staff, belief about applicabili-
ty to the organization’s product or process,
prevalence of legacy software that is
viewed as inherently inappropriate for
such approaches, or concern about the
disruption and cost of introducing new
approaches.

Second, where the need for improve-
ment is acknowledged and considered
achievable, there are usually practical bar-
riers to overcome such as how to acquire
the necessary capability or expertise, and
how to introduce the changes necessary to
make the improvements.

Overcoming the Barriers
The barriers mentioned above are reason-
able and commonplace, but not insur-
mountable. Overcoming them requires
effort from suppliers, procurers, and regu-
lators and involvement at the individual,
project, and organizational level. Typically,
strong motivation and leadership will be
required at a senior management level
where the costs to the business of poor
quality (high defects, low productivity, and
lack of resilience to change) are most like-
ly to be experienced.

The authors have worked with a num-
ber of organizations to overcome these
barriers. For example, the MULTOS sys-
tem was delivered to Mondex
International, along with three weeks train-
ing in the techniques used to develop it,
and three weeks of part-time mentoring.
Mondex has since successfully maintained
the system – to the same development

standards – with no further support from
Praxis. The NSA system was successfully
adapted by summer interns during a 12-
week placement after minimal training in
the techniques used to develop it.

The key to successful adoption of
CbyC is the adoption of an engineering
mindset. In particular, decisions on
process, methods, and tools for software
development need to be premised on the
basis of logic and precision (for example,
by asking, “How does this choice help me
meet one of the six strategies of CbyC?”),
rather than on fashion (characterized by
questions such as, “How many developers
already know this particular technolo-
gy?”).

Procurers have a role in overcoming
barriers to best practices by demanding
low defects. Regulation also has a role to
play in requiring best practices; this is
already happening within the security sec-
tor, for example Common Criteria EAL 5
and above, and within the safety sector,
particularly in Europe, for example in the
UK Civil Aviation Authority regulatory
objectives for software [15] and the UK
MoD safety standard 00-55 [12].

Maximizing the Benefit
Given the massive size of many software
systems – some of which need to be high
integrity – even a defect rate of 0.04
defect per KLOC may result in an unac-
ceptably high number of faults. To
address this, we need to employ a combi-
nation of compatible defect-prevention
approaches.

One of the other identified approach-
es in the Secure Software Task Force
report is the Team Software ProcessSM

(TSPSM) and Personal Software ProcessSM

December 2005 www.stsc.hill.af.mil 7

Figure 2: Correctness By Construction Project Metrics

Figure 2: Correctness by Construction Project Metrics

CDIS1 197,000 12.7 0.75

SHOLIS2 27,000 7.0 0.22

MULTOS CA3 100,000 28.0 0.04

A4 39,000 11.0 0.05

NSA5 10,000 38.0 0

Notes
1 Real-time air traffic information system at the London Terminal Control Centre.
2 Ship/Helicopter Operating Limits Information System developed to UK MoD Defence

Standard 00-55 Safety Integrity Level 4 (highest).
3 Certification authority for smart card operating system maintained by Mastercard.
4 A UK military stores management system.
5 NSA Tokeneer ID Station demonstrator biometrics system.

Whole Life-Cycle
Productivity
(SLOC/day)

Defects
(/1,000 SLOC)

Size (SLOC)Project Year

2001

2003

1992

1997

1999

Figure 2: Correctness By Construction Project Metrics

SM Team Software Process, Personal Software Process, TSP,
and PSP are service marks of Carnegie Mellon
University.

Total Creation of a Software Project

(PSPSM) from the Software Engineering
Institute [16]. Since the focus of TSP/PSP
is on improving the professional culture
and working practices of individuals,
teams, and management, and hence is
largely independent of languages, tools,
and methodologies that are used, the
deployment of CbyC within an environ-
ment such as TSP/PSP is highly feasible
and has already been demonstrated: A
CbyC practitioner’s results at a recent PSP
training course were both defect-free and
first to be completed. Given that the
TSP/PSP approach has also demonstrated
a very low defect rate, the combination of
these approaches offers the best opportu-
nity to realize the orders of magnitude
reduction in a defect rate that are needed
for a multi-million LOC high-integrity
software subsystem.

Conclusions
Critical software subsystems are now large
enough such that conventional develop-
ment processes cannot get anywhere near
reducing defect rates to tolerable levels.

A mature approach based on applying
rigor and precision to each phase of the
life cycle has demonstrated over the past
15 years that major improvements in
defect rate are attainable while maintain-
ing productivity levels and overall cost-
effectiveness.

Where such compatible approaches
can be deployed in combination, we can at
last see extremely low defect rates needed
for high-integrity software composed of
many million lines of code.u

Acknowledgements
The authors acknowledge contributions
from Brian Dobbing, Peter Amey, and
Anthony Hall of Praxis High Integrity
Systems.

References
1. Research Triangle Institute. The Eco-

nomic Impacts of Inadequate Infra-
structure for Software Testing. Ed. Dr.
Gregory Tassey. RTI Project No.
7007.011. Washington, D.C.: National
Institute of Standards and Technolo-
gy, May 2002 <www.mel.nist.gov/
msid/sima/sw_testing_rpt.pdf>.

2. Standish Group International. The
Chaos Report. West Yarmouth, MA:
Standish Group International, 2003
<www.standishgroup.com>.

3. National Cyber Security Partnership.
“About the National Cyber Security
Partnership.” Washington, D.C.: NCSP,
18 Mar. 2004 <www.cyberpartner
ship.org/about-overview.html>.

4. National Cyber Security Task Force.

“Improving Security Across the
Software Development Life Cycle.”
Washington, D.C.: National Cyber
Security Partnership, 1 Apr. 2004
<www.cyberpartnership.org/init-soft.
html>.

5. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Reading, MA: Addison-Wesley, 2000.

6. Praxis High Integrity Systems.
“Correctness by Construction: A
White Paper.” Issue 1.2, Jan. 2005.
Please contact the authors for a copy
of this paper.

7. Spivey, J.M. The Z Notation: A
Reference Manual. 2nd ed. Prentice-
Hall, 1992.

8. Barnes, J. High Integrity Software: The
SPARK Approach to Safety and
Security. Addison-Wesley, 2003.

9. Hooks, Ivy F., and Kristin A. Farry.
Customer Centered Products: Creating
Successful Products Through Smart
Requirements Management. 1st ed.
New York: American Management
Assoc., 11 Sept. 2000.

10. Hoare, C.A.R. Communicating Se-
quential Processes. Prentice-Hall,
1985.

11. King S., J. Hammond, R. Chapman,
and A. Pryor. “Is Proof More Cost-
Effective Than Testing?” IEEE

Transactions on Software Engineering
26.8 (Aug. 2000) <www.praxis-his.
com/pdfs/cost_effective_proof.pdf>.

12. United Kingdom Ministry of Defence.
“Def. Stan. 00-55.” Requirements for
Safety Related Software in Defense
Equipment Issue 2, Aug. 1997.

13. Hall, A., and R. Chapman R.
“Correctness by Construction: Devel-
oping a Commercial Secure System.”
IEEE Software Jan./Feb. 2002 <www.
praxis-his.com/pdfs/c_by_c_secure
_system.pdf>.

14. National Security Agency. Fourth
Annual High Confidence Software and
Systems Conference Proceedings.
Washington, D.C.: NSA, Apr. 2004.

15. United Kingdom Civil Aviation
Authority. “CAP 670, Air Traffic
Services Safety Requirements.
Amendment 3.” UKCAA, Sept. 1999.

16. Humphrey, W. Introduction to the
Team Software Process. Addison-
Wesley, 2000.

Note
1. Information about ITSEC and the

Common Criteria can be found at
<www.cesg.gov.uk/site/iacs/index.
cfm>.

8 CROSSTALK The Journal of Defense Software Engineering December 2005

About the Authors

Martin Croxford is
associate director for
security with Praxis
High Integrity Systems,
a United Kingdom-
based systems engineer-

ing company specializing in mission-
critical systems. He is a chartered engi-
neer with 15 years experience in the
software industry. Croxford has
worked on software development proj-
ects in a range of organizations, and as
a software development manager has
used Correctness by Construction to
successfully deliver a multi-million dol-
lar security-critical system.

Praxis High Integrity Systems
20 Manvers ST
BATH BA1 1PX
UK
Phone: (44) 1225-823794
Fax: (44) 1225-469006
E-mail: martin.croxford@

praxis-his.com

Roderick Chapman,
Ph.D., is product man-
ager of SPARK with
Praxis High Integrity
Systems, specializing in
the development of

programming languages and static
analysis tools for high integrity systems.
He is a chartered engineer with more
than a decade of experience in high
integrity real-time systems. Chapman is
internationally renowned for his work
on verification of correctness proper-
ties of high integrity software. He has a
Doctor of Philosophy in computer sci-
ence.

Praxis High Integrity Systems
20 Manvers ST
BATH BA1 1PX
UK
Phone: (44) 1225-823763
Fax: (44) 1225-469006
E-mail: rod.chapman@

praxis-his.com

